
This document is available at HTTP://WWW.FALCOM.DE .

FALCOM
A2D-3,A2D-3JP3,
A3D &A3DJP3
(Programming Manual)

Version 1.17

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 1

Contents

0 INTRODUCTION... 3
0.1 SECURITY ... 3
0.2 SAFETY STANDARDS .. 6
0.3 RELATED DOCUMENTS.. 6

1 GENERAL DESCRIPTION ... 8
1.1 SUPPORTED GPS PROTOCOLS BY THE GPS RECEIVERS µ-BLOX, JP3, AND JP2 9
1.2 SUMMARY SCHEMATICS A2D-3 AND A2D-3JP3... 11
1.3 SUMMARY SCHEMATICS A3D AND A3DJP3 .. 12
1.4 DETAILED START-UP INFORMATION .. 13
1.5 DOWNLOADING EXECUTABLE FILES.. 14
1.6 UPGRADING PREVIOUS MONITOR VERSIONS ... 15
1.7 MON186 COMMANDS ... 16

2 PROGRAMMING GUIDE ... 22
2.1 SERIAL SUPPORT FUNCTIONS... 22
2.2 ENVIRONMENT SUPPORT FUNCTIONS .. 26
2.3 TIME AND DATE SUPPORT FUNCTIONS... 27
2.4 GSM SUPPORT FUNCTIONS ... 29
2.5 GPS SUPPORT FUNCTIONS ... 31
2.6 FLASH FUNCTIONS... 33
2.7 FUNCTIONS FOR IO SIGNALS .. 35

3 MON186 SYSTEM SERVICES .. 37
3.1 SERIAL SUPPORT FUNCTIONS... 37
3.2 ENVIRONMENT SUPPORT FUNCTIONS .. 38
3.3 TIME AND DATE SUPPORT FUNCTIONS... 39
3.4 MEMORY MANAGEMENT FUNCTIONS ... 40
3.5 PROCESS MANAGEMENT FUNCTIONS ... 41
3.6 CONSOLE CHARACTER INPUT AND OUTPUT FUNCTIONS.. 42
3.7 FILE FUNCTIONS... 43
3.8 AUXILIARY IO FUNCTIONS ... 44
3.9 MISCELLANEOUS FUNCTIONS.. 44

4 HARDWARE SUPPORT.. 45
4.1 A2D-3 AND A2D-3JP3 HARDWARE SETTINGS .. 45
4.2 A3D AND A3DJP3 HARDWARE SETTINGS... 48

5 DEBUG INTERFACE.. 51

6 TECHNICAL DATA .. 53

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 2

Version history

Version number Author Changes
1.00 R. Georgi Initial version
1.02 R. Georgi Additional hardware information
1.03 R. Georgi Schematic A2(D)-3
1.04 R. Georgi Chapter 3./4. Scope changed
1.10 R. Georgi Additional functions (LIBA1 Release 1.02 for A2D-3)
1.11,1.12 R. Georgi Update and bugfixes
1.13 R. Georgi Update Hardware revision A2D-3REV6
1.14 B. Kirchner Update A3(D), additional functions (LIBA2 R 1.12)
1.15 R. Georgi Update Hardware description of A3D (Page 46)
1.16 R. Georgi Bug fixes
1.17 B. Kirchner - Update gps_init() for JP3

- Supported GPS protocols added
- Differences between the provided GPS receivers
- Related documents added

Registered Trade Mark: Windows and Hyperterminal are
registered trade marks of Microsoft Corporation.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 3

0 Introduction

This manual is focussed on the GSM data solutions of the FALCOM A2D-
3, A2D-3JP3, A3D and A3DJP3 series from FALCOM GmbH. It contains
information about programming purposes of the integrated controller of the
A2D-3, A2D-3JP3, A3D and A3DJP3. Please consult also the user manuals
of the FALCOM A2D embedded GSM module and the FALCOM A2D-1
GSM modem and phone. It does not contain special information about the
GSM related accessories, as there are the dial-handset, the hands free set,
the external battery pack and the mobile data terminals, which are also sold
by FALCOM.

Information furnished herein by FALCOM GmbH is believed to be
accurate and reliable. However, no responsibility is assumed for its use.
Also the information contained herein is subject to change without
notice.

Users are advised to proceed quickly to the “Security” chapter and read
the hints carefully.

0.1 Security

IMPORTANT FOR THE EFFICIENT AND SAFE OPERATION OF
YOUR GSM MODEM READ THIS INFORMATION BEFORE USE!

Your GSM modem is one of the most exciting and innovative electronic
products ever have developed. With it you can stay in contact with your
office, your home, emergency services, and others, wherever service is
provided.

GENERAL

Your modem utilises the GSM standard for cellular technology. GSM is
a newer radio frequency (« RF ») technology than the current FM
technology that has been used for radio communications for decades. The
GSM standard has been established for use in the European community
and elsewhere.
Your modem is actually a low power radio transmitter and receiver. It
sends out and receives radio frequency energy. When you use your
modem, the cellular system handling your calls controls both the radio
frequency and the power level of your cellular modem.

EXPOSURE TO RF ENERGY

There has been some public concern about possible health effects of
using GSM modem. Although research on health effects from RF energy
has focused for many years on the current RF technology, scientists have
begun research regarding newer radio technologies, such as GSM. After
existing research had been reviewed, and after compliance to all

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 4

applicable safety standards had been tested, it has been concluded that
the product is fit for use.
If you are concerned about exposure to RF energy there are things you
can do to minimise exposure. Obviously, limiting the duration of your
calls will reduce your exposure to RF energy. In addition, you can reduce
RF exposure by operating your cellular modem efficiently by following
the below guidelines.

EFFICIENT MODEM OPERATION

For your modem to operate at the lowest power level, consistent with
satisfactory call quality :
If your modem has an extendible antenna, extend it fully. Some models
allow you to place a call with the antenna retracted. However your
modem operates more efficiently with the antenna fully extended.
Do not hold the antenna when the modem is « IN USE ». Holding the
antenna affects call quality and may cause the modem to operate at a
higher power level than needed.

ANTENNA CARE AND REPLACEMENT

Do not use the modem with a damaged antenna. If a damaged antenna
comes into contact with the skin, a minor burn may result. Replace a
damaged antenna immediately. Consult your manual to see if you may
change the antenna yourself. If so, use only a manufacturer-approved
antenna. Otherwise, have your antenna repaired by a qualified technician.
Use only the supplied or approved antenna. Unauthorised antennas,
modifications or attachments could damage the modem and may
contravene local RF emission regulations or invalidate type approval.

DRIVING

Check the laws and regulations on the use of cellular devices in the area
where you drive. Always obey them. Also, when using your modem
while driving, please : give full attention to driving, pull off the road and
park before making or answering a call if driving conditions so require.
When applications are prepared for mobile use they should fulfil road-
safety instructions of the current law!

ELECTRONIC DEVICES

Most electronic equipment, for example in hospitals and motor vehicles
is shielded from RF energy. However RF energy may affect some
malfunctioning or improperly shielded electronic equipment.

VEHICLE ELECTRONIC EQUIPMENT

Check your vehicle manufacturer’s representative to determine if any
electronic equipment on board is adequately shielded from RF energy.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 5

MEDICAL ELECTRONIC EQUIPMENT

Consult the manufacturer of any personal medical devices (such as
pacemakers, hearing aids, etc...) to determine if they are adequately
shielded from external RF energy.
Turn your modem OFF in health care facilities when any regulations
posted in the area instruct you to do so. Hospitals or health care facilities
may be using RF monitoring equipment.

AIRCRAFT

Turn your modem OFF before boarding any aircraft.
Use it on the ground only with crew permission.
Do not use in the air.
To prevent possible interference with aircraft systems, Federal Aviation
Administration (FAA) regulations require you to have permission from a
crew member to use your modem while the plane is on the ground. To
prevent interference with cellular systems, local RF regulations prohibit
using your modem whilst airborne.

CHILDREN

Do not allow children to play with your modem. It is no toy. Children
could hurt themselves or others (by poking themselves or others in the
eye with the antenna, for example). Children could damage the modem,
or make calls that increase your modem bills.

BLASTING AREAS

To avoid interfering with blasting operations, turn your unit OFF when
in a « blasting area » or in areas posted : « turn off two-way radio ».
Construction crew often use remote control RF devices to set off
explosives.

POTENTIALLY EXPLOSIVE ATMOSPHERES

Turn your modem OFF when in any area with a potentially explosive
atmosphere. It is rare, but your modem or its accessories could generate
sparks. Sparks in such areas could cause an explosion or fire resulting in
bodily injury or even death.
Areas with a potentially explosive atmosphere are often, but not always,
clearly marked. They include fuelling areas such as petrol stations ;
below decks on boats ; fuel or chemical transfer or storage facilities ; and
areas where the air contains chemicals or particles, such as grain, dust, or
metal powders.
Do not transport or store flammable gas, liquid or explosives, in the
compartment of your vehicle which contains your modem or accessories.
Before using your modem in a vehicle powered by liquefied petroleum
gas (such as propane or butane) ensure that the vehicle complies with the

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 6

relevant fire and safety regulations of the country in which the vehicle is
to be used.

NON-IONISING RADIATION

As with other mobile radio transmitting equipment, users are advised that
for satisfactory operation and for the safety of personnel, it is
recommended that no part of the human body be allowed to come too
close to the antenna during operation of the equipment.
The radio equipment shall be connected to the antenna via a non-
radiating 50Ohm coaxial cable.
The antenna shall be mounted in such a position that no part of the
human body will normally rest close to any part of the antenna. It is also
recommended to use the equipment not close to medical devices as for
example hearing aids and pacemakers.

0.2 SAFETY STANDARDS

THIS CELLULAR MODEM COMPLIES WITH ALL APPLICABLE
RF SAFETY STANDARDS.

This cellular modem meets the standards and recommendations for the
protection of public exposure to RF electromagnetic energy established
by governmental bodies and other qualified organisations, such as the
following :

 Directives of the European Community, Directorate General V in
Matters of Radio Frequency Electromagnetic Energy.

0.3 Related documents

 ETSI GSM 07.05: “Use of Data Terminal Equipment - Data Circuit terminating
Equipment interface for Short Message Service and Cell Broadcast Service“

 ETSI GSM 07.07: “AT command set for GSM Mobile Equipment”

 ITU-T V.25ter: “Serial asynchronous automatic dialling and control”

The below related documents could be found on: www.falcom.de > Service >
Manuals

 “a2dman.pdf”: AT command set

 Zod_dg.pdf: User manual for GPS protocols of the GPS receiver JP2

 SiRFmessages.pdf: Input/Output Messages for Falcom GPS-
Receivers with SiRFstarIIe-chip-set.

http://www.falcom.de/

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 7

 A2-3dev.zip: Sources (examples) and libraries for programming FALCOM
A2D-3, FALCOM A2D-3JP3, FALCOM A3D and FALCOM A3DJP3. It also
includes a “getting started” document for the developer-KIT.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 8

1 General Description

MON186 is the operating system for FALCOM A2D-3, A2D-3JP3, A3D
and A3DJP3 with the Am186ES controller.

MON186 is a basic monitor. It supports download of executable images to
ROM or RAM, and rudimentary debugging. For developers just getting
started, however, MON186 running on FALCOM A2D-3, A2D-3JP3, A3D
and A3DJP3 modems provides a powerful tool to allow quick prototyping
and benchmarking of simple algorithms, before a major investment is made
in x86 development tools. Its minimal DOS emulator allows the developer
to download and run small .EXE files which were developed and tested
using standard compilers on a PC running DOS.

NOTE! THIS DESCRIPTION APPLIES TO BOARDS OPERATING AT
FACTORY DEFAULT SETTINGS. PLEASE SEE "DETAILED
STARTUP INFORMATION" BELOW IF THIS PROCEDURE DOES
NOT WORK FOR YOU.

The GSM modems FALCOM A3D and FALCOM A3DJP3 can contain the
following components:

 Feature A3D A3DJP3
GSM Core WM2C2 WM2C2
GPS Core (option) FALCOM JP21) JP32)

CPU Core AM186ES AM186ES
Flash/ SRAM/ EEPROM/ RTC 1MB/ 256KB/ 4KB/Yes 1MB/ 256KB/ 4KB/Yes
MMC Card support (option) Yes Yes
External Serial Interfaces 3 RS232/ 1RS485 3 RS232/ 1RS485
IO’s 8digital IO’s or

6 digital IO’s + 2 analogue
inputs

8digital IO’s or
6 digital IO’s + 2 analogue
inputs

Hands-Free-Kit (option) Integrated (Full Duplex,
Echo-Cancellation)

Integrated (Full Duplex,
Echo-Cancellation)

Backup Battery 1200mAh Li-Ion + 1200mAh Li-Ion +
Communication via Internet
(option)

Yes (i-Chip, ConnectOne) Yes (i-Chip, ConnectOne)

Hardware Extensions Support Yes (System Bus
Connector)

Yes (System Bus
Connector)

Power Management Enhanced (Co-Processor) Enhanced (Co-Processor)
Voltage Range 8-36 V DC 8-36 V DC
Cradle Yes (same like A2D-3) Yes (same like A2D-3)
DOS like Monitor Yes Yes

1) FALCOM JP2: Chipset CONEXANT (For further information about the
 GPS protocols, please refer to the related document „Zod_dg.pdf“)

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 9

2) FALCOM JP3: Chipset SiRF starII (For further information about the
GPS protocols, please refer to the related document „SiRFmessages.pdf“)

The GSM modems FALCOM A2D-3 and FALCOM A2D-3JP3 can contain
the following components:

 Feature A2D-3 A2D-3JP3

GSM Core WM2C WM2C
GPS Core (option) µ-blox3) JP34)

CPU Core AM186ES AM186ES
Flash/SRAM/EEPROM/RTC IMB/256KB/4KB/Yes IMB/256KB/4KB/Yes
External Serial Interfaces 2 RS232 2 RS232
IO’s 4 digital IO’s 4 digital IO’s
Power Management Enhanced (Co-Processor) Enhanced (Co-Processor)
Voltage Range 10,8...31,2 VDC 10,8...31,2 VDC
Cradle Yes Yes
DOS like Monitor Yes Yes

3) µ-blox: Chipset SiRF starI (For further information about the GPS
protocols, please refer to the related document „SiRFmessages.pdf“)

 4) JP3: Chipset SiRF starII (For further information about the GPS
protocols, please refer to the related document „SiRFmessages.pdf“)

1.1 Supported GPS protocols by the GPS receivers µ-Blox, JP3, and
JP2

µ -Blox and JP3
(Chipset from SiRF)

JP2
(Chipset from Conexant)

GPGGA GPGGA
GPGSV GPGSV
GPGSA GPGSA
GPRMC GPRMC
GPVTG GPVTG
GPGLL PRWIZCH

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 10

ATTENTION: The Libraries (refer to A2-3dev.zip)
provided by Falcom GmbH support the NMEA GPS
protocols of µ-blox GPS MS1, FALCOM JP2 and
FALCOM JP3. An example of GPS init (gps.c) could be
found in the A2-3dev.zip.
By using other libraries (customer’s libraries) please
refer to the corresponding manual (SiRFmessages.pdf or
Zod_dg.pdf).

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 11

1.2 Summary schematics A2D-3 and A2D-3JP3

For a quick overview please have a look at the schematic of the FALCOM
A2D-3 and A2D-3JP3. Detailed information you will find in chapter 6
„Technical Data“.

INTERFACE B (DB15) COM1
INTERFACE C (RJ45) COM2
INTERNAL (GSM) COM3
INTERNAL (GPS)5) /DEBUG (DB9) COM4

5) GPS embedded into A2D-3: µ- blox (Chipset SiRF starI)
 GPS embedded into A2D-3JP3: JP3 (Chipset SiRF starII)

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 12

1.3 Summary schematics A3D and A3DJP3

For a quick overview please have a look at the schematic of the A3D and
A3DJP3. Detailed information you will find in chapter 6 „Technical Data“.

INTERFACE (DB9) RS232 COM1
INTERFACE (RJ45) RS232 COM2
INTERNAL (GSM) COM3
INTERNAL (GPS)6) COM4
INTERFACE (DB15) RS232 COM5
INTERFACE (DB15) RS485 COM6

6) GPS embedded into A3D: JP2 (Chipset CONEXANT)
 GPS embedded into A3DJP3: JP3 (Chipset SiRF starII)

Sy
st

em
 B

us

UART 1
16C752B

COM1

COM2

COM5

COM6

COM3

COM4

Power Supply
Wakeup Logic

Memory Devices

256K RAM
1M FLASH

Extension Connector

UART 1
16C752B

GSM

GPS

Controller
AM186ES-25

RTC

EEPROM

Power Panagemenet and
I/O controler

I2 C

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 13

1.4 Detailed start-up information

Set up your PC terminal program for 9600 Baud, at 8 bits per character, no
parity and one stop bit. Set the terminal program flow control to hardware
flow control. Connect the supplied serial cable of the PC to the FALCOM
A2D-3, A2D-3JP3, A3D or A3DJP3
When the modem is reset, the 2 LEDs will go on. This first LED pattern will
hold for four seconds. After four seconds MON186 will start a default
modem application or display its sign on screen to the terminal and updating
the LED display. At this point, you can press '?' followed by <ENTER> for
MON186's help screen. When power is supplied, the initial LED pattern
indicates that MON186 is waiting for an ‘@‘ character to be received from
the terminal. If it receives an ‘@‘, it will automatically adjust to the baud
rate of the ‘@‘ character and display the MON186 welcome message and
prompt. If it receives any character other than an ‘@‘ it will restart the
terminal check and let the user try again to press an ‘@‘.

If the user does not press an ‘@‘ during the initial LED pattern (nominally
four seconds), MON186's next action depends on whether the user has
installed a start-up program in the flash or not. If the user has used the ‘W‘
command to store an application program in the flash and the set "auto-run"
variable to mark it for running at start-up time, then that DOS program will
be executed. Otherwise, MON186 will display the welcome message and
prompt with the standard baud rate settings. If the baud rate does not match
that one of the terminal, the user will see nothing or garbled characters. (See
the „Downloading EXE files" sections for information about installing user
programs.)

At the factory, the baud rate is set to 9600 and the setting is 8N1. You can
change this default by setting the COM "baud rate" variable on a common
value.

The automatic baud rate detection is very useful in the following
circumstances:

 If a user program is installed, but the user wishes to invoke the monitor
instead.

 If the programmed baud rate does not match the terminal baud rate.
 If the programmed CPU speed does not match the actual CPU speed.

 (The bit clock is divided down from the CPU clock.)
 If the user does not want to wait 4 seconds for booting of the monitor

The automatic baud rate detection is designed to detect baud rates from
1200 to 115200, but how well it works depends on the CPU type and speed.
The algorithm may also fail at higher baud rates if you run the CPU at
slower frequencies than the default 18.432 MHz.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 14

MON186 supports downloading of Intel extended hex files into RAM or
ROM. The hex file should contain type 2 extended address records, which
specify the load address in the 1MB address range and the last record in the
file should be a type 1 EOF record.

A file which is being downloaded to RAM for execution should be located
between 410h and the start of the monitor data at the end of the RAM, and a
file which is being downloaded to ROM for execution should be located
between the start of the ROM and F0000h. The monitor ‘I‘ command will
show the size and location of the free RAM, and some information about the
size and location of the flash ROM.

It is impermissible for the file to have some sections download to RAM and
others download to ROM, because MON186 relocates itself to some RAM
locations while running. MON186 will report a range error on the download
of such a file.

If you are downloading into ROM, you should first make sure that the target
download area is empty by using the ‘X‘ command to erase the flash
sectors. Unless you are storing multiple programs into flash, the easiest way
to do this is to use ‘XZ‘ to erase all the application sectors.

There is no specific command to download hex files. Simply start
transferring with your terminal program in “ASCII“ or "raw ASCII" mode.
MON186 will echo the first record as it receives it, but when it parses it and
determines that it is a hex file record, it will switch into a file transfer mode.
The type 1 EOF record at the end of the file will switch back to command
mode.

If an error is encountered during the download, an error message will be
printed, and MON186 will stay in download mode until it receives an
Escape character (1Bh), at which time it will print a more detailed error
message and then return to command mode.

1.5 Downloading executable files

MON186 can download and run DOS executable files, enabling customers
to use affordable, readily available, and familiar PC-based compilers and
assemblers to develop initial test and benchmarking code. MON186
provides a minimal subset of DOS int 21h functionality, which is fully
described in the section, "MON186 system services" chapter 3. Most
compilers are capable of generating EXE files which work within this
environment, as long as the user does not use library functions which
require file-based I/O.

Unlike some prior versions, MON186 V3.37 does not support direct
downloading of EXE files. It supports AMD LPD extensions to the Intel hex
file format instead and a supplied conversion program will convert EXE

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 15

files into this extended hex file format. There are several reasons for this
change:

(1) Unlike hex files, exe files do not have error checking
(2) Some terminal programs, e.g. Hyperteminal® which comes with
 Windows® xx, will not transmit binary data unchanged.
(3) The added overhead of transferring a hex file is mitigated
 by the fact that MON186 allows baud rates up to 115200.
(4) The hex files can be stored to Flash (using the ‘W‘ command) and later

moved to RAM and executed (using the ‘L‘ command).

To convert your EXE file into a HEX file, use the MAKEHEX utility
supplied on this archive in the TOOL subdirectory. For example, to convert
FOOBAR.EXE into FOOBAR.HEX, simply type MAKEHEX FOOBAR
(assuming MAKEHEX.EXE is in your path).

Once you have converted your EXE file, simply download it to MON186 as
described in the previous section. Once it is downloaded, you can set
parameters for the program (if it expects a command line) with the ‘N‘
command, and then start execution with the ‘G‘ command.

Alternatively, use the ‘W‘ command before you start downloading the file,
to program it into flash. Since flash is non-volatile, the program can then be
run multiple times, even after power has been cycled.

1.6 Upgrading previous monitor versions

(1) Use the 'XZ' command to erase all application flash sectors.

(2) Upload A2MON3xx.HEX, the upgrade file, to the board. It is not
necessary to type any command to do this, the MON186 automatically
recognises a file download when it sees the colon which starts the file.

(3) Use the 'G' command to go to the new monitor, which is running out of
user flash ROM space. This will automatically go to the correct
address.

(4) Press in the first 4 seconds an '@' to establish communication with the
new monitor. You are now running out of the application ROM based
copy of the monitor.

(5) Type 'Z' <enter> to initiate the upgrade. You will be asked if this
is really what you want to do. Answer 'Y' to perform the upgrade, but
do not do this if your power is not stable, or if little children are
near the On/Off button. If the upgrade is aborted before it finishes
you may need to send your board back to factory to have the flash
reprogrammed.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 16

(6) Your monitor is now upgraded, but you are still running out of the
application ROM copy of the monitor. To run out of the new boot
copy of the monitor press '@‘<ENTER> then within 4 seconds
‘@’<ENTER> again to establish communication with the boot copy
of the monitor.

(7) You can now use the 'XZ' command to remove the application copy of
the monitor, and then download any desired hex file to application
ROM.

1.7 MON186 commands

The first step in understanding how to use MON186 commands is to
understand the command parameters. Different commands take different
parameters but these parameters are very commonly used:

byte -- 1 or 2 hexadecimal digits

WORD -- 1-4 hexadecimal digits

DECIMAL -- 1-9 decimal digits

ADDRESS -- An address may be entered in typical x86 segment:
offset format, e.g. F800:0 to refer to the base of the monitor, or a
LINEAR address may be entered as 5 hex digits, e.g. F8000. If the
linear address approach is used, MON186 treats the first 4 digits as the
segment, and the last digit as the offset. Most commands which do not
alter memory also support SHORT addresses. A short address is
where only the offset is specified (between 1 and 4 hex digits). The
current value of the DS register is implicitly used for the segment.
Commands which alter memory require a full address.

RANGE -- An address range may be specified in two different
ways, either as <address> <space> <address>, where the address of
the start of the range and the address immediately after the end of the
range are specified, or as <address> L <length>, where the address of
the start of the range and the length of the range are explicitly
specified. The following commands are identical, and dump 1024
bytes starting at 16K:

D 400:0 400:400
D 0:4000 400:400
D 04000 L 400
d04000l400

As the last command shows, spaces only matter where the parser would
have trouble distinguishing the end of one number from the start of the next
one, and all commands may be entered in upper or lower case.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 17

LIST -- A list is a collection of bytes. Each byte may be specified
with one or two hex digits, with the bytes separated by spaces, and
ASCII data may be specified in single or double quotes. The following
command will place an ASCII string, complete with carriage return
and two line feeds, at 16K:

E 04000 "This is a quoted string" 0D A,0A

Note that (other than the mandatory 5 digits for a linear address) numbers
do not require leading zeros. Also note that commas are optional.
They may be used instead of or in conjunction with spaces.

Fat characters command name and syntax (commands must be
completed and executed with <ENTER> key)

Angle brackets <> indicate required parameters.
Square brackets [] indicate optional parameters.
Vertical bar | indicates the user should choose one of the parameters

<Break> When MON186 receives an RS232 break (usually invoked
by pressing Alt-B or Ctrl-Break on the terminal application) it will break
into the debugger. This is useful in some cases when your application
appears 'hung' -- you can find out where it is executing. Note, however, that
<Break> can also be used to debug MON186 itself, and you should be
careful how many times you press it without pressing "G" to continue
program execution. Please note that too many breaks will cause a stack
overflow within MON186 itself. This break detection will be allowed or
restricted depending on the setting of the BOOT environment parameter.

B <address> Sets a breakpoint by saving the value at a location, and
then inserting an int 3 instruction (CCh) at that location. Only one
breakpoint is active at a time -- setting one removes previous breakpoints.
Breakpoints may only be set in RAM, not in ROM. When the int 3 at the
breakpoint is executed, the code at the breakpoint is automatically restored.
At this point, you may set another breakpoint if you desire and use the G or
T commands to continue execution.

C <range> <address> Compares two memory ranges. Each differing byte
will be displayed on a single line as:
<addr in range> <byte in range> <comparison byte> <comparison address>

D[WA] [range] Dumps a memory range, in hexadecimal
bytes/words and/or ASCII. If the range is not specified, it will dump 128
bytes starting where the most recent dump command has been finished.

E <address> [list] Enter memory. If the list (at least one byte) is
specified, the entire list will be stored in memory at <address>. If no list is
specified, the command will prompt for entry of a list of bytes at
incrementing addresses. When all data has been entered, respond to the

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 18

prompt with a single dot ‘.‘ on a line or with the escape key this function
can be finished.

F <range> <list> Fills a memory range with a list of bytes. The
entire range is filled, and the list is replicated as many times as it takes to fill
it. The size of the list does not need to fit evenly in the range: the last copy
of the list is truncated to fit.

G [=[address]] "Go", e.g. start execution. If an address is given, it will be
stored in CS:IP before execution is starting. The equal sign is permitted for
compatibility with DOS DEBUG.

I[W[word]] The "Info/Input" command by itself will show information
about the system. A typical screen shoot you will find below. The line
os release listen the running monitor version. The line system time shows
the current date and time. The line “remote port” lists the current monitor
connection with the corresponding serial settings. The “Rom/Ram/Free”
size displays the code size, the data size of the monitor itself and the
available free ram size. The line flash device shows the detected flash
device and the size of the flash. The last line shows the current monitor code
base start, the boot monitor code base start and flash sectors usable for
storing programs.

OS release: A3x86 Monitor V3.44(FIFO) released 25.01.2002
System time: Thu 27.Jun.2002 11.39.46
Remote port: COM1 9500,8N1,H
Rom/Ram/Free size: 087E0 03730 3C4B0
Flash device: 29LV800B 1024KB
Mon/Boot/App base: F0000 F0000 - 8000 9000 A000 B000 C000 D000 E000

For input ports ‘I‘ followed by a word will input from a byte-wide port and
display the results, and ‘IW‘ followed by a word will input from a word-
wide port and display the results.

J The J command causes the automatic baud rate detection to be
invoked. Once you have entered this command, you may change the
terminal's baud rate. Once you are set up properly, simply press "a" to re-
establish connection with the monitor. Note that automatic baud rate
detection may not be reliable at baud rates which are relatively high to the
CPU frequency and bus width. At a CPU frequency of 18.432MHz, the
Am186ES parts can reliably detect 115200 kBaud.

L[G] [decimal] The “Load“ command loads a previously stored hex file
from flash to RAM. If no parameters are given, a list of currently stored
programs is displayed. If a decimal number is given, the corresponding
program is copied from flash to RAM. Programs are loaded to flash using
the W command, and may be made bootable with the "AutoRun" setting.
The ‘LG‘ command is equivalent to the ‘L‘ command immediately followed
by a ‘G‘ command, e.g. load and run the program.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 19

LG 1 -- loads programm 1 in RAM and starts execution
L -- list installed programms

M <range> <address> Moves a block of memory from one address
to another. Overlapping blocks are handled correctly. The following
command sequence shows how the monitor can be executed out of RAM:

M F0000 L F000 00400 -- moves monitor to base of RAM
G 00400 -- starts execution
I -- shows new monitor CS and free memory

N <arguments> In DOS DEBUG, this command names the COM
or EXE file to load or save, and also gives command line arguments.
MON186 has no knowledge of the file name, so only requires command line
arguments (if needed by the program). We recommend you to design your
test program so that it does not rely on command line arguments as it is easy
to forget to use the ‘N‘ command.

O[W] <word> <byte>|<word>
Outputs the second parameter (byte or word) to the port given in the first
parameter. Use ‘OW‘ for word-wide outputs, ‘O‘ for byte-wide outputs.

P[ABCX] [VariableName DecimalValue|String Value]
Sets, shows or clears permanent environment parameters. The monitor
stores these values in a 32 kBit serial eeprom. Use ‘PC‘ to clear all
environment parameter at once. Use ‘PX’ to perform an internal cleanup
and compress operation. Use ‘P VariableName‘ to clear a specific setting.
For its own configuration MON186 uses the following variables:

BOOT = cpuspeed,autorun,feature

cpuspeed -- This defines the speed of the CPU to the monitor. This is
required for correct default baud rate set up and to correct internal
timer tick correctly, which is used by benchmark programs and also
governs the speed of the LED patterns.

autorun -- When this is non-zero, it selects which EXE program to load
from the flash and run at boot time. A value beetween 8000 - F000
starts directly a program downloaded to this address in the flash.A
value greater than 0 starts a EXE program loaded to the flash with the
‘W‘ command.

feature -- This defines a special string with following meaning. When the
character ‘L‘ is defined, the monitor will use the LEDs to show
current status. When this is not set, the monitor will not change the
LEDs. When the character ‘B‘ is defined, the monitor enter itself after
receiving a break on the serial port. With the character ‘Q’ you can
skip the autobaud test on the COM1 on every boot operation. To
perform a check and cleanup operation of the environment settings on
every boot process you can set the character ‘E’.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 20

COM1 = baudrate[,mode,muxvalue,handshake][,buffer size]
COM2 = baudrate[,mode,muxvalue,handshake][,buffer size]

baudrate -- Sets the default baudrate for the serial port (1200 - 115200). The
detection of the baudrate at startup overwrites this setting und the
monitor uses the detected value instead.

mode -- Sets the default line setting for the serial port
(7E1,7O1,8N1,8E1,8O1).

handshake - Sets the used flow control of serial operation. That means with
‘X‘ the monitor uses XonXoff software flow control and with ‘H‘ the
monitor uses RtsCts hardware flow control.

buffer size - Sets the size of the buffer for the serial port. The default value
is 1024 Byte and can be set from 256 .. 8192 Byte.

P BOOT “18432000,1,l” -- set autorun after boot to programm 1
P COM1 “57600,8N1,0,H” -- set COM1 to 57600 baud, 8N1 with handshake

R [RegisterName | ("F" FlagName)]
The "Register" command with no parameters will display the current state

of all registers and flags. ‘R‘ can also be used to set the value of any
register or flag bit:

To examine a register: R AX
This will print the current value of the AX register and prompt you for
a new value.

To change a register without examining it: R AX 5000
This will change the value of AX to 5000h.

To examine the flags: R F
This will print the current flag values, and prompt you for a two letter
code to change them. Flag names are the same as DOS debug uses.
Don't worry if you get the flag name wrong, MON186 will show you
the names it expects.

To change a flag without examining it: R F DN
This will set the direction flag, so the direction is now "down".

NOTE: As discussed previously, in most situations, spaces are optional.
These commands could be entered as RAX, RAX5000, RF, and
RFDN, respectively.

S <range> <list> „Search“ a given range for a list of bytes. The
starting address of each occurrence of the list within the range is displayed.
There will be no display if the list is not found within the range.

T [=address] [word] This command uses the x86 trap flag to trace
execution. Unlike breakpoints, traces may be performed in ROM as well as

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 21

RAM. An optional starting address may be used to set CS:IP before the
trace starts, and an optional number of steps to trace may be entered as well.
The default is 1 step.

W [file name] [base] The “Write“ command initiates a download of a
hex file (generated by running the host program MAKEHEX on a DOS
executable) to the flash. The file name is given so that the program can be
identified later if multiple programs are stored in the flash. Programs are
stored starting at the base segment reference of the flash. Use the ‘L‘
command later to move a program into RAM for execution, or use the
"AutoRun" setting to cause the monitor to load and run a program at boot
time.

W test-program -- store program test-program
... upload an application hexfile as text, ascii or raw file ...

X <sector number> | Z The "eXterminate" command will erase one
of the sectors in the application area of the flash or, if ‘XZ‘ is given, will
erase all of them. The ‘I‘ command can be used to retrieve information
about the sectoring of the flash part. Use 0 to refer to the first sector, 1 to the
next one, etc.

U [hh.mm.ss] [dd.mm.yyyy]
The “U“ command sets the current system time and date to the real time
clock or shows the current value.

Z The “Z“ command upgrades the boot monitor. It may be issued
under two circumstances, either from a monitor which is running at the
upgrade location (normally E0000h, but depends on flash type), to upgrade
the boot monitor in the same flash part, or from a monitor which is running
at the boot monitor location (F0000h) to replace a dead monitor in a
different flash part (on boards which support a CS switch from one flash to
another).

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 22

2 Programming guide

We choose Paradigm C++ 5.00.025 as programming environment for the
FALCOM A2D-3, A2D-3JP3, A3D and A3DJP3. That package includes all
necessary tools to build application for the FALCOM A2D-3, A2D-3JP3,
A3D and A3DJP3. The standard „C“ functions are contained in the standard
libraries of Paradigm C++. The different programming environment for the
hardware related parts of the FALCOM A2D-3, A2D-3JP3, A3D and
A3DJP3 are included in an additional library. That library „LIBA2.LIB“
contains hardware related serial, date, time and environment functions and
the syntax of those additional functions are listed below. For an overview of
the Paradigm C++ standard function please look at the online helps or try to
refer to it in a programming training course.

2.1 Serial support functions

The functions init_stream(), ComGetch(), ComPutch(), ComGets(),
ComPuts(), ComString(), ComStringCR(), ComGet() can be used to
communicate with those serial devices. The functions ComGetConfig(),
ComSetConfig(), ComLine() should be used for reading the current state of
the com port or changing the com port configuration. Please note that after
every function which returns the state of the com port (LineState), an
existing error condition will be cleared.

Parameter definitions:

#define PORT_COM1 0
#define PORT_COM2 1
#define PORT_COM3 2
#define PORT_COM4 3
#define PORT_COM5 4
#define PORT_COM6 5

// control values for set in ComLine()
#define LINE_SET 0x8000
#define LINE_CLEAR 0x0000
#define LINE_FLUSH 0x4000
#define LINE_BREAK 0x2000
#define LINE_UPDATE 0x1000
#define LINE_RESET 0x0800
#define LINE_MASK 0x00FF
#define LINE_DCD 0x0080
#define LINE_DSR 0x0020
#define LINE_CTS 0x0010
#define LINE_DTR 0x0008
#define LINE_RTS 0x0004
#define LINE_RI 0x0002

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 23

#define LINE_DEVICE 0x0001

// return values for line state
#define LINE_STS_MASK 0xFF00
#define LINE_ERROR 0x8000
#define LINE_TRNS_NOTREADY 0x4000
#define LINE_RECV_BREAK 0x2000
#define LINE_TRNS_BLOCKED 0x1000
#define LINE_RECV_FRAME 0x0800
#define LINE_RECV_PARITY 0x0400
#define LINE_RECV_OVER 0x0200
#define LINE_RECV_READY 0x0100
#define LINE_MASK 0x00FF
#define LINE_DCD 0x0080
#define LINE_DSR 0x0020
#define LINE_CTS 0x0010
#define LINE_DTR 0x0008
#define LINE_RTS 0x0004
#define LINE_RI 0x0002
#define LINE_DEVICE 0x0001

// serial parameter values for config in ComGetConfig(), ComSetConfig()
#define MODE_BIT_MASK 0x0003
#define MODE_BIT_5 0x0000
#define MODE_BIT_6 0x0001
#define MODE_BIT_7 0x0002
#define MODE_BIT_8 0x0003
#define MODE_STOP_MASK 0x0004
#define MODE_STOP_1 0x0000
#define MODE_STOP_2 0x0004
#define MODE_PAR_MASK 0x0018
#define MODE_PAR_NONE 0x0000
#define MODE_PAR_ODD 0x0008
#define MODE_PAR_EVEN 0x0018
#define MODE_BAUD_MASK 0x00E0
#define MODE_BAUD_1200 0x0000
#define MODE_BAUD_2400 0x0020
#define MODE_BAUD_4800 0x0040
#define MODE_BAUD_9600 0x0060
#define MODE_BAUD_19200 0x0080
#define MODE_BAUD_38400 0x00A0
#define MODE_BAUD_57600 0x00C0
#define MODE_BAUD_115200 0x00E0

// flow control values for config
#define MODE_FLOW_MASK 0x0300
#define MODE_FLOW_H 0x0100
#define MODE_FLOW_X 0x0200
#define MODE_MUX_MASK 0x0C00

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 24

// mux control values for config (only for A1-3)
#define MODE_MUX_DB9 0x0000
#define MODE_MUX_GPS 0x0400
#define MODE_MUX_GSM 0x0800
#define MODE_MUX_WS 0x0C00

Definition of the com_stream structure:

typedef struct com_stream {
ulong timemark;
uchar port;

 uint line;
 uint state;
 int count;
 uchar p[400];
};

Initialize com_stream structure to zero and set the port number in it:

void init_stream(struct com_stream *d,char port);

Parameter com_stream *d com_stream structure
Char port ComPort

Get Parameter of com port:

uint ComGetConfig(byte com,uint *config,uint *timeout);

Parameter byte com ComPort
uint* config ComConfig, see MODE_xxx parameter
uint* timeout Timeout

Result uint line LineState, see LINE_xxx parameter

Set Parameter of com port. Communication speeds grater then 57600 in
Applications are not recommended:

uint ComSetConfig(byte com,uint config,uint time);

Parameter byte com ComPort
uint config ComConfig, see MODE_xxx parameter
uint time Timeout

Result uint line LineState, see LINE_xxx parameter

Get a character from com port:

uint ComGetch(byte com);

Parameter byte com ComPort
Result uint line LineState (HighByte) and InputData (LowByte)

Put a character to com port:

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 25

uint ComPutch(byte com,byte xch);

Parameter byte com ComPort
byte xch OutputData

Result uint line LineState, see LINE_xxx parameter

Read data from com port:

int ComGets(byte com,char *p,int num,uint *state);

Parameter byte com ComPort
char* p Buffer
int num Size of result buffer
uint* state LineState, see LINE_xxx parameter

Result int count Input character count

Write data to com port:

int ComPuts(byte com,char *p,int num,uint *state);

Parameter byte com ComPort
char* p Buffer
int num number of output characters
uint* state LineState, see LINE_xxx parameter

Result int count Output character count

Put a string to com port:

int ComString(byte com,const char *p);

Parameter byte com ComPort
char* p Buffer

Result int line LineState, see LINE_xxx parameter

Put a string + <cr> + <lf> to com port:

int ComStringCR(byte com,const char *p);

Parameter byte com ComPort
char* p Buffer

Result int line LineState, see LINE_xxx parameter

Set the state of the com port:

uint ComLine(byte com,uint line);

Parameter byte com ComPort
uint line LineState, see LINE_xxx parameter

Result uint line LineState, see LINE_xxx parameter

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 26

The function ComGetLine() is used to read characters from an com port.
The function reads back a maximal number of characters and uses a timeout
in system ticks to finish the reading of input characters. With the echo
setting you can enable/disable the output of the prompt at beginning and the
echo of input characters. That function also supports minimal line editing
functionality (ESC,BACKSPACE,ENTF).

int ComGetLine(byte com,char *p,int num,long time,char
*prompt,bool echo);

Parameter byte com com port value
char* p data buffer
int num maximum number of char to read
long time timeout in ms (0=forever)
char* prompt output prompt
BOOL echo print prompt and echo the input characters

Result int numch number of read characters

The function ComGet () is used to read characters from a com port. The
function reads back a maximal number of characters and uses a timeout in
system ticks to finish the reading of input characters. The function stops if
an end of line condition <CR,LF> is detected or a timeout occurs.

int ComGet(byte com,char *p,int num,long time)

Parameter byte com com port value
char* p data buffer
int num maximum number of char to read
long time timeout in ms (0=forever)

Result int numch number of read characters

2.2 Environment support functions

The functions SetEnviron(), GetEnviron() and EnvironString() can be
used to communicate with a serial eeprom device. To handle different data
types these functions use a parameter type which can be ENV_CLEAR
(delete a entry), ENV_VALUE (integer data), ENV_STRING (string arrays)
and ENV_DATA (binary arrays).

Parameter definitions:

enum {
 ENV_CLEAR,ENV_STRING,ENV_DATA,ENV_VALUE
} EnvType;

Write an environment entry:

int SetEnviron(int type,char *entry,void *env,int num)

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 27

Parameter int type EnvType
 char* entry EnvName
 char* env EnvData
 int num Number of data to write
Result int count Output character count

Read an environment entry:

int GetEnviron(int type,char *entry,void *env,int num);

Parameter int typ EnvType
 char* entry EnvName
 char* env EnvData
 int len Maximum number of data to read
Result int num Input character count

Read or write a string environment entry:

int EnvironString(char *entry,char *env,int num);

Parameter BOOL write TRUE to write, FALSE to read
 char* entry EnvName
 char* env EnvData

int num>0: read max. ‘len’ characters from environment variable
int num=0: write data to environment variable
int num<0: erase environment variable

Result int count Output or Input character count

To read a complete initialisation use the get_environ() function. That
function separates strings from an environment setting, which is joined with
semicolons. The fields in the environment to read will set in the position
parameter. Each bit in the position parameter corresponds with a string field
in the environment string. The written strings in the environment will be
given back through a pointer to a string array. If you want to read a non
existing or empty field the default string will be used instead. The number
of values to read at one go is limited to 16 entries.

char **get_environ(uint position,char *sName,char *sDefault);

Parameter uint position Values to read
 char* sName EnvName
 char* sDefault Default String
Result char** Result Array of Strings

2.3 Time and Date support functions

The functions GetTime(), SetTime() can be used to communicate with the
real time clock. The functions add_timer() and kill_timer() can be used to
install or remove software timer with a given activity interval.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 28

Parameter definitions:

typedef struct time_t {
byte Hundredths;

 byte Seconds;
 byte Minutes;
 byte Hour;
 byte Day;
 byte Month;
 uint Year;
 byte DayOfWeek;
 ulong TotalTime;
 };

Get current system time:

ulong GetTime(struct time_t *t);

Parameter struct time_t *t SystemTime
Result ulong Ticks ticks of the day, value in hundredth seconds.

Set current system time:

void SetTime(struct time_t *t);

Parameter struct time_t *t SystemTime
Result nothing

The function gettimeofday() returns the time in ms since last power on.

ulong gettimeofday(void)

Parameter nothing
Result Time in milliseconds

The function dosleep() can be used for realisation of time delays. During
these wait time the function DoIdle() will be called internally to support
other system activities.

void dosleep(ulong time)

Parameter ulong time Wait time in milliseconds
Result nothing

The function add_timer() can be used to install software timer functions.
The corresponding function will be called upon expiration of the given timer
value. The given timer count variable reflects the actual value of a timer and
can also be manipulated to change the actual wait time. Depending of the
timer function call the timer will be restarted or stopped. If the timer
function returns with a TRUE value the timer will be restarted in other cases
the timer will be stopped. The function kill_timer() can also be used to stop

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 29

a timer function. Please note that these timer needs a periodically call to the
timer idle function idle_timer(). By calling the system idle loop DoIdle()
that will be done automatically. To achive a good accuracy of the timer
DoIdle() should also be called in time consuming calculation loops.

int add_timer(bool (*func)(void),ulong *timer,ulong value)

Parameter bool (*func)(void) timer function
ulong *timer timer count variable or NULL
ulong value timer count cycle in milliseconds

Result int id timer id or error condition

int kill_timer(bool (*func)(void),ulong *timer)

Parameter bool (*func)(void) timer function
ulong *timer timer count variable or NULL

Result int error error condition

2.4 GSM support functions

The function gsm_init() initialises the gsm engine. The parameter env
points to the environment name that contains baud rate, device number and
pin number and a set of commands used for initialisation of the gsm engine.
The parameter init also contains a set of AT commands for initialisation
purposes. The parameter start decides if a cold or warm start of the gsm
engine will be done (the main functionality in case of a cold start is timer
setting and update mode check).

void gsm_init(bool start,char **config,char *init);

Parameter bool start Cold/warm start of the gsm engine.
char** config gsm configuration, see below
char* config[0] gsm baudrate setting
char* config[1] gsm device
char* config[2] gsm pin number
char* init AT command set for initialisation

Result nothing

The function gsm_cmd() gives a command to the gsm engine and read back
the response. If you give an valid answer string and the response of the gsm
engine is not the expected response, this function delivers an empty
response back.

bool gsm_cmd(char *str,char *answer,int max_size,bool last,ulong wait)

Parameter char* cmd AT command to the gsm engine
char* answer Expected answer from the gsm engine or string array
int max_size Size of given string array or expected modem response
bool last Get the first or last answered string
ulong wait Timeout for the AT command in millisecond

Result bool success String compare of answer and modem response

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 30

The function gsm_sms_send() is used to send short messages with the
contents from the parameter sms to the specified receiver pointed to recv.

int gsm_sms_send(char *recv,char *sms,ulong wait);

Parameter char* recv Phone number of the receiver
char* sms String to send
ulong wait Timeout value for the at command

Result bool success

The function gsm_sms_list() is used to read selected messages from the
SIM card storage.

// information of the sms message
typedef struct pSMS {
 byte index;
 byte type;
 byte send[16];
 byte sms[160];
 DWORD time;
};

// type of the sms message
#define SMS_REC_UNREAD 0
#define SMS_REC_READ 1
#define SMS_STO_UNSENT 2
#define SMS_STO_SENT 3
#define SMS_ALL_LIST 4

int gsm_sms_list(int type,struct pSMS *sms, int max_msg);

Parameter int type String type of the SMS
struct pSMS *sms SMS storage array, must held max SMS index
int max_msg Size of SMS storage array

Result int count Number of messages

The parameters for the gsm functions commonly are taken from „GSM“
environment entry. The function gsm_environ() can be used to change
these parameters. The baud, pin or a cmd string will be set to the gsm
environment in case that string is not NULL. Change the gsm environment
setting:

void gsm_environ(char *entry,char *baud,char *pin,char *cmd);

Parameter char* entry GSM environment entry (use the define GSM_ENVIRON)
char* baud Baud rate setting
char* pin Pin number
char* cmd Additional AT command set in the initialisation

Result nothing

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 31

The function gsm_baudrate() is used to changed the baud rate setting of the
port COM1 and of the local flow rate to the gsm engine.

int gsm_baudrate(char *baud);

Parameter char* baud Baud rate setting
Result int succeed

The function gsm_softon() handles softon/off functionality of the gsm
engine. Following actions can be handled with that function.

enum {
 GSM_RESET,GSM_SOFTON,GSM_SOFTOFF,GSM_UPDATE
} GsmResetType;

void gsm_softon(int action);

Parameter int action Softon action (reset,softon,softoff,update)
Result nothing

2.5 GPS support functions

The FALCOM A2D-3, A2D-3JP3, A3D and A3DJP3 offer different gps
capabilities. An external gps receiver could be connected by the RJ45 port
or as an option the A2D-3, A2D-3JP3, A3D and A3DJP3 can be assembled
with an internal GPS receiver. This section contains functions that handle
with internal or external GPS receiver. Generally the GPS receiver is used
with standard NMEA protocol settings. In the library the GARMIN GPS35
as external GPS receiver and the µBLOX GPS-MS1, JP2 and JP3 as
internal GPS receiver will be supported. The functions gps_init(),
gps_cmd(), gps_cmd() can be used to initialise the GPS receiver and
gps_position(),gps_lastposition(), gps_is_valid() can used to get protocols
from the GPS receiver.

typedef enum {
GPS_AUTODETECT=-1, // Auto detect and store result in

// “GPS_DEVICE” environment variable
GPS_CONFIG=0, // set new NMEA protocol only
GPS_GARMIN_G35, // explicit device GARMIN
GPS_SIRF, // explicit device uBLOX or JP3 (SIRF)
GPS_JUPITER // explicit device JP2 (CONEXANT)

} GpsReceiver;

The parameter unit specified autodetection of the GPS receiver or using a
fixed GPS receiver during the initialisation process. All supported GPS
receiver chipsets are enumerated in GpsReceiver.
The parameter config is used for configuration of the specific gps receiver
and sets up of the following topics. The parameter config[0] changed the
default NMEA protocol of the GPS receiver. The parameter config[1]

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 32

changed the earth datum setting especially for the GARMIN GPS35
receiver. If a parameter passed as a NULL string the factory settings of the
gps receiver will not be changed. The function gps_init() initialises the GPS
device. With the first call of gps_init() the GPS receiver will be detected.
The parameter and a timer function for reading :

int gps_init(int unit, char **sConfig);

Parameter int unit gps startup or receiver option
char** config gps configuration, see below
char* config[0] gps protocol setting
char* config[1] gps earth date

Result int gps_dev detected GPS device

The function gps_cmd() passes a command sequence to the gps receiver. If
parameter bin is set to 0, the necessary checksum will be added
automatically.

void gps_cmd(char *cmd,bool bin);

Parameter char* cmd command sequence
bool bin=0 nmea mode :

Set up nmea sequence from cmd and send it to the gps.
 bin=1 binary mode sends cmd in raw mode to gps. cmd[0]

contains the number of bytes to send. cmd[1] contains the
first byte to transmit.

Result nothing

Use the functions gps_position() to get the current gps position and
gps_lastposition() to get the last validated gps position.

char *gps_position(char *def);

Parameter char* def default value – returned if no position string available
Result char* position string from gps.

char *gps_lastposition(char *def)

Parameter char* def default value – returned if no valid position string
available

Result char* position string from gps.

The function gps_is_valid() checks the validity of the gps protocol. The
parameter gps specified the nmea sequence of the gps receiver. The
parameter valid points to an array for gps protocol information. In case of
passing an NULL pointer the compiled in standard for that array will be
used. The gps protocol information is used to decide if a protocol is valid or
not. The function returns GPS_VALID if a valid gps protocol string could
be determined. It’s necessary to call stream_gps_data() in your
communications main loop or idle loop. If there is a dead end while

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 33

streaming gps data you should call the function gps_cold_start() to restart
the gps receiver.

typedef struct gps_array {
 char *prot;
 char *sign;
 int valid_pos;
} GpsValidArray;

enum {
GPS_ERR_PROT=-3,GPS_ERR_VALID,GPS_UNVALID,
GPS_VALID

} GpsValidFlag;

int gps_is_valid(char *gps,struct gps_array **valid);

Parameter char* gps nmea squence from the gps
struct gps_array** valid gps protocol information

(there can be used gps_array valid_prot)
Result int succeed

2.6 FLASH functions

The AMD186ES controller is an industry standards compatible controller.
The memory system of this controller contains a 256Kbyte SRAM in the
range from 0x00000-0x3FFFF and an FLASH ROM in the range from
08x0000-0xFFFFF. That means that from the physical flash device only a
512Kbyte block is accessible direct to the memory space of the controller.
The Mon186 uses these 512Kbyte for storage user applications, for it’s own
memory storage and for updating itself. A user could use the other space of
the flash device for data logging, large parameter fields, etc. These memory
spaces are responsive by a banking scheme with the address outputs A19-
A21. To support these additional memory blocks in an application the
functions flash_device(), flash_erase(), flash_read() and flash_write() can
be used. The flash devices are based on a segmented block architecture. The
common size of flash sectors are 64Kbyte and each flash sector can only
erased at one go. The last flash sector of the device is used to store the
Mon186 and can not be used for data storage. Please note that by erasing the
last flash sector the A2D-3, A2D-3JP3, A3D and A3DJP3 will be damaged
and must be repaired in the factory. To report flash parameters a struct
DevTypeStruct is used. This struct contains all useful parameters to dial
with the flash memory.

typedef struct {
 char *DevName; // Device name
 int FlashID; // ID that the device reports
 int DevSize; // Size of device in KB.
 int BlkSize; // Sector size in KB

int SegLast; // Monitor Boot Segment
 int SegSize; // Number of segmented blocks.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 34

 int *Sectors; // Segmented blocks of top/bottom devices
} DevTypeStruct;

The first step is the identification of the flash device. The device
information will be stored in a given parameter type.

BOOL flash_device(DevTypeStruct *type);

Parameter DevTypeStruct *type Flash device parameter report
Result BOOL succeed

To erase a flash sector use the flash_erase() function. The sector number
must be within the range 0 to SegLast-1 of the device. For a valid operation
the function returns with a TRUE result.

BOOL flash_erase(int sector);

Parameter int sector Flash sector to erase
Result BOOL suceed

To read or write the flash device the function flash_read() or flash_write()
could be used. Please note that the maximum size for reading is 64 kByte
and a boundary conflict outside 512 kByte will not be detected. A good
practice is to read or write data inside one sector boundary.

int flash_read(int sec,int offs,void *data,int num);

Parameter int sec Flash sector (0 to SegLast-1)
int offs Flash offset (from sector begin in byte)
void* data Buffer
int num Max number of bytes to read

Result int count Bytes read from the flash

int flash_write(int sec,int offs,void *data,int count);

Parameter int sec Flash sector (0 to SegLast-1)
int offs Flash offset (from sector begin in byte)
void* data Buffer
int num Count

Result int count Bytes written to the flash

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 35

2.7 Functions for IO signals

The FALCOM A2D-3, A2D-3JP3, A3D and A3DJP3 support up to four
(A2D-3 and A2D-3JP3) / eight(A3D and A3DJP3)7) digital IO signals. The
state of the digital IO signals can tested and set by using the SetAux(),
GetAux() functions. Additionally you can control signals to the GPS
receiver and GSM modem.
7) The FALCOM firmware GPS/Alarm supports only 4 IOs.

The following defines can be used for accessing signals through these
functions:

#define AUX_LINE_SIGNALS 0x0000 /* general digital ports */
#define AUX_LINE_MASK 0x0001 /* direction of digital ports */

#define AUX_LINE8 0x0080
#define AUX_LINE7 0x0040
#define AUX_LINE6 0x0020
#define AUX_LINE5 0x0010
#define AUX_LINE4 0x0008
#define AUX_LINE3 0x0004
#define AUX_LINE2 0x0002
#define AUX_LINE1 0x0001

#define AUX_PWR_SIGNALS 0x0002 /* general power mode */

#define AUX_PWR_GPS 0x2000 /* activate gps power */
#define AUX_PWR_GSM 0x1000 /* activate gsm power */
#define AUX_PWR_CHRG 0x0800 /* activate charger power */
#define AUX_PWR_MAIN 0x0400 /* activate controller power */
#define AUX_PWR_HANDSET 0x0200 /* activate headset power */
#define AUX_PWR_AUDIO2 0x0100 /* activate audio handsfree amp*/
#define AUX_PWR_FAIL 0x0080 /* input power fail */
#define AUX_PWR_IGN 0x0040 /* ignition signal */
#define AUX_PWR_MUTE 0x0020 /* mute signal */
#define AUX_PWR_RESET 0x0010 /* modul button */
#define AUX_PWR_ON 0x0001 /* setup power mode */

#define AUX_GSM_SIGNALS 0x0003 /* gsm power mode */

#define AUX_GSM_AUDIO1 0x0010 /* handset activated */
#define AUX_GSM_SIMCHG 0x0008 /* activate gsm simchng */
#define AUX_GSM_RESET 0x0004 /* activate gsm reset */
#define AUX_GSM_SOFTON 0x0002 /* activate gsm softon */
#define AUX_GSM_PWR 0x0001 /* activate gsm power */

#define AUX_GPS_SIGNALS 0x0004 /* gps power mode */

#define AUX_GPS_RESET 0x0004 /* gps reset (emul. pwr off/on)*/
#define AUX_GPS_RUN 0x0002 /* push to fix mode (µblox MS1)*/
#define AUX_GPS_PWR 0x0001 /* activate gps power */

/* power management events only for A3D */
#define AUX_PWR_WAKEUP 0x0005 /* wakeup events */

#define AUX_PWR_WUSA 0x0020 /* under voltage */
#define AUX_PWR_WRTC 0x0010 /* wakeup by RTC interrupt */

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 36

#define AUX_PWR_WIOPORT 0x0008 /* wakeup by digital IO port */
#define AUX_PWR_WSERIAL 0x0004 /* wakeup by serial data */
#define AUX_PWR_WCHARGING 0x0002 /* wakeup by bat.charge */
#define AUX_PWR_WIGNITION 0x0001 /* wakeup by ignition */

#define AUX_LINE_WAKEUP 0x0006 /* wakeup mask for digital IO */

#define AUX_LINE_WAKEUP_LH 0x00ff /* low to high mask */
#define AUX_LINE_WAKEUP_HL 0xff00 /* high to low mask */

#define AUX_PWR_CLKDIV 0x0007 /* setup clock divider */
#define AUX_MASK_CLKDIV 0x0007 /* mask for clock divider */

The AUX_LINE_SIGNALS defines can be used for accessing the external
digital IO lines. The AUX_LINE_MASK define decides the operating of the
digital IO lines as output signals. The other defines can be used for
accessing signals to the GSM engine, the GPS receiver and for the power
managment. The AUX_POWER_SIGNALS controls the power on/off
capabilities of the unit.

void SetAux(unsigned char action, int data);

Parameter unsigned char action external action
int value output value

Result nothing

int GetAux(unsigned char action);

Parameter unsigned char action external action
Result int value input value

The WriteAux() function sets the LED timing:

void WriteAux(uint8 *t,int num);

Parameter uint8 * t LED timing pattern list. Each LED time interval (50 ms)
is cyclic displayed the next pattern of this list.

int num Count of pattern in the LED timing pattern list.
Result nothing

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 37

3 MON186 system services

3.1 Serial support functions

The A2D-3 and A2D-3JP3 handle serial ports COM1-COM4 and the A3D
and A3DJP3 COM1-COM6 for the connection with different serial IO
devices. The serial lines connected are shown in the following table:

COM1 serial interface on the DB15 (DB9 on A3D and A3DJP3)
COM2 serial interface on the RJ45
COM3 internal serial interface gsm modem
COM4 serial interface internal gps receiver or debug port
COM5/COM6 serial interfaces on DB15 (only A3D and A3DJP3)

The functions ComPutch(), ComGetch(), ComRead(), ComWrite(),
ComString() can be used to communicate with that serial devices. The
functions ComGetConfig(), ComSetConfig(), ComLine() should be used
for reading the current state of the com port or changing the com port
configuration. The MON186 supports the COM service 00h - Init com port,
01h - Get com port state, 02h - Get character from com port, 03h – Put
character to com port, 04h - Get string from com port, 05h - Put string to
com port and 06h – Init com port with a string configuration.

INT22 service 00h: Init com port

Parameter AH = 00h COM service 00h
 AL = ComPort handle of com port

CX = ComConfig new configuration setting
DX = Timeout new timeout setting

Result AX = LineState current state of com port

INT22 service 01h: Get com port state

Parameter AH = 01h COM service 01h
 AL = ComPort handle of com port

CX = LineState set line state of com port
Result AX = LineState current state of com port

CX = ComConfig configuration setting
DX = Timeout timeout setting

INT22 service 02h: Get character from com port

Parameter AH = 02h COM service 02h
 AL = ComPort number of com port
Result AX = LineState current state of com port

CL = InputData char read from com port

INT22 service 03h: Put character to com port

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 38

Parameter AH = 03h COM service 03h
 AL = ComPort handle of com port

CL = OutputData character writes to com port
Result AX = LineState current state of com port

INT22 service 04h: Get string from com port

Parameter AH = 04h COM service 04h
 AL = ComPort handle of com port

ES:BX = Buffer string buffer
CX = Count size of maximum characters to read

Result AX = LineState current state of com port
CX = ReadCount size of characters read from com port

INT22 service 05h: Put string to com port

Parameter AH = 05h COM service 05h
 AL = ComPort handle of com port

ES:BX = Buffer string buffer
CX = Count size of characters to write

Result AX = LineState current state of com port
CX = WriteCount size of characters written to com port

INT22 service 06h: Init com port with string configuration

Parameter AH = 00h COM service 00h
 AL = ComPort handle of com port

ES:BX = ComConfig configuration string com port
Result AX = LineState current state of com port

3.2 Environment support functions

The FALCOM A2D-3, A2D-3JP3, A3D and A3DJP3 have got a non
volatile memory for storage of settings, Parameters, low volume data, etc.
This device is a serial EEPROM with a capacity of 4096 Byte and with a
guaranteed write cycles of one million. The functions SetEnviron(),
GetEnviron() and EnvironString() can be used to communicate with that
device. To handle that different data types these functions use a type
Parameter EnvType wich can be ENV_CLEAR (delete an entry),
ENV_VALUE (integer data), ENV_STRING (string arrays) and
ENV_DATA (binary arrays). The other parameters are the name and the
data of an environment entry. The third function is used for an easy
handling of ascii strings. You should note, that during a writing operation to
the device a preview entry with the same name will be overwritten. The
Mon186 supports the DOS service 2Eh - Set environment and 2Fh - Get
environment to read and write data to the environment memory.

INT21 service 2Eh: Get environment data

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 39

Parameter AH = 2Eh DOS service 2Eh
 AL = EnvType type ENV_CLEAR means delete entry

 type ENV_VALUE means write integer data
 type ENV_DATA means write binary data

 type ENV_STRING means write ascii data
 DS:DX = EnvName environment entry name (max 63 chars)
 ES:BX = EnvData environment entry data (max free space of device)
 CX = Count maximum size of data
Result CF = 0 operation successful

AX = Size size of written data

 CF = 1 operation failed
 AX = ErrorCode

INT21 service 2Fh: Set environment data

Parameter AH = 2Fh DOS service 2Fh
 AL = EnvType type ENV_VALUE means read integer data
 type ENV_DATA means read binary data
 type ENV_STRING means read ascii data
 DS:DX = EnvName environment entry name (max 63 chars)
 ES:BX = EnvData environment entry data (max free space of device)
 CX = Count size of data
Result CF = 0 operation successful

AX = Size size of read data

 CF = 1 operation failed
 AX = ErrorCode

3.3 Time and Date support functions

On the FALCOM A2D-3, A2D-3JP3, A3D and A3DJP3 a real time clock
and calendar device is used. The functions SetTime() and GetTime() can be
used to communicate with that device. The real time clock is a low power
device with a common CR1220 lithium backup battery with a typical life
time of 2 years. The MON186 supports the DOS service 2Ah - Get date,
2Bh - Set date, 2Ch - Get time, 2Dh - Set time to read and write data to the
real time device.

INT21 service 2Bh: Set real time clock date

Parameter AH = 2Bh DOS service 2Bh
CX = Year year (1980 .. 2079)
DH = Month month (1 .. 12)
DL = Day day (1 .. 31)

Result CF = 0 operation successful
AL = 0

 CF = 1 operation failed
AL = ErrorCode

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 40

INT21 service 2Ah: Get real time clock date

Parameter AH = 2Ah DOS service 2Ah
Result CF = 0 operation successful

AL = 0
CX = Year year (1980 .. 2079)
DH = Month month (1 .. 12)
DL = Day day (1 .. 31)
BL = Weekday day of week (0 .. 6)

 CF = 1 operation failed
AL = ErrorCode

INT21 service 2Dh: Set real time clock time

Parameter AH = 2Dh DOS service 2Dh
Result CF = 0 operation successful

AL = 0
DL = Msec hundreds of second (0 .. 99)
DH = Sec seconds (0 .. 59)
CL = Minutes minutes (0 .. 59)
CH = Hour hour (0 .. 23)

 CF = 1 operation failed
AL = ErrorCode

INT21 service 2Ch: Get real time clock time

Parameter AH = 2Ch DOS service 2Ch
DL = Msec hundreds of second (0 .. 99)
DH = Sec seconds (0 .. 59)
CL = Minutes minutes (0 .. 59)
CH = Hour hour (0 .. 23)

Result CF = 0 operation successful
AL = 0

 CF = 1 operation failed
AL = ErrorCode

3.4 Memory management functions

For handling with bigger memory junks in the global heap the C library
functions _fmalloc(), _ffree() and _frealloc() or farmalloc(), farrealloc(),
farfree() and farcalloc should be used. Those functions are implemented
by he standard DOS service memory functions listed below. The MON186
supports the DOS service 48h - Memory allocation, 49h Free allocated
memory and 4Ah – Memory reallocation for a proper memory management.

INT21 service 48h: Memory allocation

Parameter AH = 48h DOS service 48h
BX = Size block size in paragraph

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 41

Result CF = 0 operation successful succeeded
AX = Segment segment prefix

 CF = 1 operation failed
BX = Size maximum block size in paragraph
AX = ErrorCode

INT21 service 49h: Free allocated memory

Parameter AH = 49h DOS service 49h
ES = Segment segment präfix

Result CF = 0 operation successful succeeded

 CF = 1 operation failed
 AX = ErrorCode

INT21 service 4Ah: Memory reallocation

Parameter AH = 4Ah DOS service 4Ah
ES = Segment segment prefix
BX = Size block size in paragraph

Result CF = 0 operation successful succeeded
AX = Segment segment prefix

 CF = 1 operation failed
BX = Size maximum block size in paragraph
AX = ErrorCode

3.5 Process management functions

The MON186 supports the DOS service 4Ch and 00h - Exit process for the
realisation of a process termination.

INT20: Process termination

Parameter nothing old DOS termination service

INT21 service 00h: Process termination

Parameter AH = 00h DOS service 00h

INT21 service 4Ch: Process termination

Parameter AH = 4Ch DOS service 4Ch
AL = ReturnCode dos return value

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 42

3.6 Console character input and output functions

The higher level stdio functions in the standard library are putch(), getch(),
printf(), scanf(), etc. . These functions use standard dos calls to read and
write to the console. By implementing those low level console functions you
are able to use standard functions for input and output purposes. The
MON186 supports the DOS service 01h - Character input with echo, 02h -
Character output, 06h - Character raw input, 07h,08h - Character raw input,
09h - String output, 0Ah - String input, 0Bh - Console input state and 0Ch -
Flush buffer and console input function.

INT21 service 01h: Character input with echo

Parameter AH = 01h DOS service 01h
Result AL = Input input character

INT21 service 02h: Character output

Parameter AH = 02h DOS service 02h
DL = Output output character

INT21 service 06h: Character raw input

Parameter AH = 06h DOS service 06h
DL = FFh read character
DL = Output output character

Result ZF = 0 character in buffer
AL = Input input character

ZF = 1 buffer empty

INT21 service 07h: Character raw input

Parameter AH = 07h DOS service 07h
Result AL = Input input character

INT21 service 08h: Character raw input

Parameter AH = 08h DOS service 08h
Result AL = Input input character

INT21 service 09h: String output

Parameter AH = 09h DOS service 09h
DS:DX = Buffer output buffer

INT21 service 0Ah: String input

Parameter AH = 0Ah DOS service 0Ah
DS:DX = Buffer input buffer

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 43

INT21 service 0Bh: Console input state

Parameter AH = 0Bh DOS service 0Bh
Result AL = State state of input console

INT21 service 0Ch: Flush buffer and console input function

Parameter AH = 0Ch DOS service 0Ch
AL = InputFunction input function (01h,06h,07h,08h,0Ah)

3.7 File functions

The MON186 supports the DOS service 3fh - Read from file and 40h -
Write to file for a minimal file support with the file handle console and aux
port.

HANDLE_STDIN Redirect to console
HANDLE_STDOUT Redirect to console
HANDLE_STDERR Redirect to console
HANDLE_AUX LED port handle

INT21 service 3Fh: Read from file

Parameter AH = 3Fh DOS service 3Fh
BX = Handle file handle
DS:DX = Buffer data buffer
CX = Count size of data

Result CF = 0 operation successful succeeded
AX = Size size of read data

 CF = 1 operation failed
AX = ErrorCode

INT21 service 40h: AUX output state

Parameter AH = 40h DOS service 40h
BX = Handle file handle
DS:DX = Buffer data buffer
CX = Count size of data

Result CF = 0 operation succeeded
AX = Size size of read data

 CF = 1 operation failed
AX = ErrorCode

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 44

3.8 Auxiliary IO functions

The MON186 supports the DOS service 03h - AUX input and 04h - AUX
output for special ports and signals. These functions can be used to read or
to set following values:

INT21 service 03h: AUX input state

Parameter AH = 03h DOS service 03h
AL = Port port

Result AX = Input input from port

INT21 service 04h: AUX output state

Parameter AH = 04h DOS service 04h
AL = Port port
DX = Output output to port

3.9 Miscellaneous functions

At last, the MON186 supports some kind of utility functions DOS service
25h – Set an interrupt handler, 35h - Get an interrupt handler and 30h – Get
system information.

INT21 service 25h: Set interrupt handler

Parameter AH = 25h DOS service 25h
AL = Number interrupt number
DS:DX = Handler interrupt handler

INT21 service 35h: Get interrupt handler

Parameter AH = 35h DOS service 35h
AL = Number interrupt number

Result ES:BX = Handler interrupt handler

INT21 service 30h: Get system information

Parameter AH = 30h DOS service 30h
Result AL = Version dos version

AH = Revision
CX = Device device code
DX = System system version

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 45

4 HARDWARE SUPPORT

4.1 A2D-3 and A2D-3JP3 hardware settings

PORT_WDI 0x0100 /* watchdog trigger and
 output for IO signals */
IO signal 1 0x01
IO signal 2 0x02
IO signal 3 0x04
IO signal 4 0x08
RUN_GPS 0x20 /* restart GPS receiver */
PWR_ON 0x40 /* lock power supply */

UART_CSA 0x0500 /* UART channel A base */
UART_CSB 0x0600 /* UART channel B base */

CHA RTS .. RI DB9 signals /* UART chan A IO value */
CHB RTS Reset A2D /* UART chan B IO value */
CHB DTR Mute
CHB DSR SIM button
CHB CTS Reset button
CHB CD Power fail
CHB RI Ignition

IOB186ES 0xff00 /* AM186ES register base */

GPIO0 DCD line DB9 /* AM186ES GPIO port */
GPIO1 DTR line DB9
GPIO2 /CS UART channel a
GPIO3 /CS UART channel b
GPIO4 DSR line DB9
GPIO5 RI line DB9
GPIO6 /RESET GPS receiver (A2D-3REV6)
GPIO10 tone signal output
GPIO11 IO signal 1 (input only A2D-3REV6)
GPIO12 IO signal 2 (input only A2D-3REV6)
GPIO13 IO signal 3 (input only A2D-3REV6)
GPIO14 IO signal 4 (input only A2D-3REV6)
GPIO15 flash address A20
GPIO16 flash address A21
GPIO17 /CS WDI (output IO signal A2D-3REV6)
GPIO18 RTS line DB9
GPIO19 CTS line DB9
GPIO20 led green
GPIO21 led orange
GPIO24 ENABLE RS485
GPIO25 FLASH_LED device A2D
GPIO26 SOFTON device A2D

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 46

GPIO29 ENABLE device A2D
GPIO30 SDA (I2C data)
GPIO31 SCL (I2C clock)

INT 08h TIMER0 /* Interrupt types */
INT 12h TIMER1
INT 13h TIMER2
INT 0Ch RTC
INT 14h COM1
INT 11h COM2
INT 0Dh COM3
INT 0Fh COM4

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 47

Table1: J2 bus expander for memory or other IO extensions
(Hirose FX8-80S-SV)

1 GND 2 GND
3 A1 4 D0
5 A2 6 D1
7 A3 8 D2
9 A4 10 D3
11 A5 12 D4
13 A6 14 D5
15 A7 16 D6
17 A8 18 D7
19 A9 20 D8
21 A10 22 D9
23 A11 24 D10
25 A12 26 D11
27 A13 28 D12
29 A14 30 D13
31 A15 32 D14
33 A16 34 D15
35 A17 36 /RES
37 A18 38 /UCS
39 A19 40 /LCS
41 A20 42 /WLB
43 A21 44 /WHB
45 /WR 46 HOLD
47 /RD 48 HLDA
49 18.432MHz 50 NMI
51 9.216MHz 52 WDI
53 ARDY 54 PWR_ON
55 SRDY 56
57 SDA 58
59 SCL 60
61 MIC+ 62
63 MIC- 64
65 SPK+ 66 MUTE
67 SPK- 68 IGN
69 VBB 70 DBG TxD
71 VIN3V 72 DBG RxD
73 VCC5V 74 VCC5V
75 VCC3V 76 VCC3V
77 VCC3V 78 VCC3V
79 GND 80 GND

Technical papers of the main components can be found on the
manufacturer’s homepages:

AM186ES www.amd.com
ST16C2450 www.exar.com
PCF8593 www.philips.com
24LC32 www.microchip.com

http://www.amd.com/
http://www.philips.com/
http://www.philips.com/
http://www.microchip.com/

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 48

4.2 A3D and A3DJP3 hardware settings

PORT_WDI 0x0100 /* watchdog trigger and
 output for IO signals */
IO signal 1 0x01
IO signal 2 0x02
IO signal 3 0x04
IO signal 4 0x08
IO signal 5 0x10
IO signal 6 0x20
IO signal 7 0x40
IO signal 8 0x80

UART1_CSA 0x0120 /* UART channel A base */
UART1_CSB 0x0140 /* UART channel B base */
UART1_CSA 0x0160 /* UART channel A base */
UART1_CSB 0x0180 /* UART channel B base */

CHA RTS .. RI DB9 signals /* UART chan A IO value */
CHB RTS Reset A2D /* UART chan B IO value */
CHB DTR Mute
CHB DSR SIM button
CHB CTS Reset button
CHB CD Power fail
CHB RI Ignition

IOB186ES 0xff00 /* AM186ES register base */

GPIO0 DCD line DB9 /* AM186ES GPIO port */
GPIO1 DTR line DB9
GPIO2 /Enable MMC
GPIO3 Handset available
GPIO4 DSR line DB9
GPIO5 RI line DB9
GPIO6 Power On Handset
GPIO10 tone signal output
GPIO11 IO signal 1 (input only)
GPIO12 IO signal 2 (input only)
GPIO13 IO signal 3 (input only)
GPIO14 IO signal 4 (input only)
GPIO15 flash address A20
GPIO16 flash address A21
GPIO17 /Chip Select address decoder (COM3 to COM6, MMC)
GPIO18 RTS line DB9
GPIO19 CTS line DB9
GPIO20 led green
GPIO21 led orange
GPIO24 Direction RS485
GPIO25 Enable speaker
GPIO26 Soft On device A2D

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 49

GPIO29 /Chip Select ADC
GPIO30 SDA (I2C data)
GPIO31 SCL (I2C clock)

INT 08h TIMER0 /* Interrupt types */
INT 12h TIMER1
INT 13h TIMER2
INT 0Ch RTC
INT 14h COM1
INT 11h COM2
INT 0Dh COM3
INT 0Dh COM4
INT 0Dh COM5
INT 0Dh COM6

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 50

Table1: J2 bus expander for memory or other IO extensions
(Hirose FX8-80S-SV)

1 GND 2 GND
3 A1 4 D0
5 A2 6 D1
7 A3 8 D2
9 A4 10 D3
11 A5 12 D4
13 A6 14 D5
15 A7 16 D6
17 A8 18 D7
19 A9 20 D8
21 A10 22 D9
23 A11 24 D10
25 A12 26 D11
27 A13 28 D12
29 A14 30 D13
31 A15 32 D14
33 A16 34 D15
35 A17 36 /RES
37 A18 38 /UCS
39 A19 40 /LCS
41 A20 42 /WLB
43 A21 44 /WHB
45 /WR 46 HOLD
47 /RD 48 HLDA
49 18.432MHz 50 NMI
51 52 WDI
53 ARDY 54 PWR_ON
55 SRDY 56
57 SDA 58
59 SCL 60
61 MIC+ 62 TxDG
63 MIC- 64 RxDG
65 SPK+ 66 MUTE
67 SPK- 68 IGN
69 VBB 70 DBG TxD
71 VIN3V 72 DBG RxD
73 VCC5V 74 VCC5V
75 VCC3.3V 76 VCC3.3V
77 VCC3.3V 78 VCC3.3V
79 GND 80 GND

Technical papers of the main components can be found on the
manufacturer’s homepages:

AM186ES www.amd.com
TL16C752 www.ti.com
PCF8593 www.philips.com
24LC32 www.microchip.com

http://www.amd.com/
http://www.philips.com/
http://www.philips.com/
http://www.microchip.com/

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 51

5 DEBUG INTERFACE

For the A2D-3 and A2D-3JP3 is a development kit available. That package
includes a C++ programming book, training course and the Paradigm
DEBUG/RT debug tool. By using this package you are ready to work with a
powerful source debugging environment. In that chapter you will find the
first steps to work with that tool. For installing that package please follow
the next steps:

1. Install the Paradigm Locate and DEBUG/RT on your computer. For the
steps to install that package please have a look at the documentation of the
Paradigm tools.

2. Install the PDREMOTE/ROM on the A2D-3, A2D-3JP3, A3D or A3DJP3 .
The porting of that target hardware is done in the „A2KIT186.ZIP“ on the
additional floppy disk included in that development kit. „PDREM2.HEX“ is
compiled for using COM2 as debug port and „PDREM4.HEX“ is working
on COM4. The „PDREM5.HEX” is the debug kernel for the COM5 on an
A3D device. Unzip that archive in your project tree. Start a terminal
program on your computer. Power On the A2D-3, A2D-3JP3, A3D or
A3DJP3 and put in within the first four seconds an ‘@’ character. The file
„PDREM2.HEX“ or „PDREM4.HEX“ should be downloaded on the A2D-
3, A2D-3JP3, A3D or A3DJP3 using the following commands:

Welcome to AMD186 Monitor (? <Enter> for help)

mon186: xz ; erase all flash locations
Erasing flash sector(s) ... 8000 9000 E000
mon186:02000002E0001C ; download „PDREM4.HEX“ as

; text file in the terminal program
Begin file download ... Press ESC to abort
..
Device programmed successfully
mon186: p BOOT "18432000,E000,l" ; set autostart entry
mon186: p
 BOOT=18432000,E000,l
mon186:@ ; reboot the A2(D)-3

Finally you can reboot the A2D-3, A2D-3JP3, A3D or A3DJP3 or jump to
PDREMOTE/ROM with the command „G E0000“. The steps 1 and 2 are
obsolete if you order the FALCOM A2D-3, A2D-3JP3, A3D or A3DJP3
developer kit. The A2D-3, A2D-3JP3, A3D or A3DJP3 modem in that kit is
prepared and tested with the paradigm tools.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 52

3. Test the communication between host computer and the A2D-3, A2D-3JP3,
A3D or A3DJP3 target with the „RTTEST“ tool. Please choose the right
com port setting depending on your system and the nominal baud rate of
57600 baud. By pressing two times the F2 key you will see following

screen.

The white characters are the response from the PDREMOTE/ROM on the
A2D-3, A2D-3JP3, A3D or A3DJP3. With the F11 key you can run a cyclic
confidence test in order to test the communication between the device and
the host computer. If that test will hang or report some errors you should
recompile the PDREMOTE/ROM with a smaller baud rate setting.

4. The next final step is to start the Paradigm DEBUG/RT. The setting for the
communication parameter is defined in the „PDRT186.INI“. Relating the
settings of the communication ports, tested with the test tool before, you
should change the parameter in the „PDRT186.INI“. As an example of the
configuration of the file "PDRT186.INI" see the next lines:

; This file is used by Paradigm DEBUG for initialisation purposes.
; Refer to the Paradigm DEBUG manual for a complete list of commands
; that can be placed in .INI files.

DEVICE = COM2 ;Communications device : COMn (n=1-4) or CUSTOM
SPEED = 57600 ;COM baud rate : 9600, 19200, 38400, 57600, or 115200
TIMEOUT = 18 ;serial timeout (in DOS ticks, 18 per second)
FLAGS = ;Default command line options

After that initial setting the DEBUG/RT will start properly and
communicate with the target system. The PDREMOTE/ROM is capable to
drive DEBUG/RT interrupt controlled. Before you start your debug session
you should enable that in the setting „Debug controls“ and „Enable dynamic
mode“. For the first test in the „A2KIT186.ZIP“ the example project
„TIME“ is included in the „SAMPLE“ folder. Based on that example you
should have a good starting-point to build and test your own applications
with that development kit.

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 53

6 Technical data

∗ Dimensions: 115mm x 54mm x 33mm (B x W x H)
∗ Weight: 200g
∗ Power supply: 10,8...31,2 V DC

265 mA at 12V (max.)
85 mA at 12V (idle)
0,5 mA at 12V (shutdown)

∗ Temperature limits: -25°C to +70°C (Storage)
-20°C to +55°C (Operating)

• Hardware settings: CpuSpeed 18.432 MHz
Memory 1Mb Flash, 256Kb RAM

 Serial Device GSM modem A2D, GPS receiver GPSMS1
IO Device PCF8593 (RTC, timer and alarm functions)

 24LC32 (32Kbit serial E2PROM)

∗ Interface A: RJ11 power supply, Cable reference

∗ Interface B: RS232 / V24 and 4 IO ports, 15 pin D-Sub

Cable reference for connector 9 pin D-Sub (modem cable)

DB15 pin 4 to DB9 pin 1 DCD
pin 1 pin 2 TXD
pin 6 pin 3 RXD
pin 7 pin 4 DTR
pin 9,10 pin 5 GND
pin 3 pin 6 DSR
pin 8 pin 7 RTS
pin 2 pin 8 CTS
pin 5 pin 9 RI

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 54

Electrical parameter general IO ports

Iout max = 200 mA VinH >= 4,5V
Vout <= 31,2V VinL <= 1,2V (or left open)
Rin = 470KΩ

CAUTION:
Please connect the IO signals to supply voltage through a resistor
(1K to 100K) for input current limiting during power-on

∗ Interface C: RJ 45 8 pin shielded (Audio,RS232)

∗ Interface D: Antenna 50Ω FME female GSM, long cable

∗ Interface E: Antenna 50Ω FME female GPS, short cable (option)

Antenna description: GPS antenna with LNA (low noise amplifier)
Frequency range: 1575,42 ± 1,023 MHz
LNA gain: ≥ 25 dB
Power requirements: 3.3V..5V max. 50mA

∗ SIM interface: SIM card holder for small SIM cards (3V only)

∗ Digital interface: V.24 (D-Sub 9pin)

∗ Data protocol: asynchron, non-/transparent GSM 07.01, 07.02, 04.21
• 2400 bps V22 bis
• 2400 bps V26 ter
• 4800 bps V32
• 9600 bps V32
• 9600 bps V34
• 2400 bps V110
• 4800 bps V110
• 9600 bps V110

∗ Short Message Service: GSM 03.40, 07.05
• SMS mobile originated
• SMS mobile terminated
• CMS
• CBS

A2D-3, A2D-3JP3, A3D & A3DJP3 PROGRAMMING MANUAL VERSION 1.17

This document is a property of FALCOM GmbH and may not be copied or circulated without
permission.

Page 55

∗ Audio interface:
• Electret microphone
• Loudspeaker 150Ω
• Ground

	Introduction
	0.1Security
	0.2SAFETY STANDARDS
	0.3Related documents

	General Description
	Supported GPS protocols by the GPS receivers (-Blox, JP3, and JP2
	1.2Summary schematics A2D-3 and A2D-3JP3
	1.3Summary schematics A3D and A3DJP3
	1.4Detailed start-up information
	1.5Downloading executable files
	1.6Upgrading previous monitor versions
	1.7MON186 commands

	Programming guide
	2.1Serial support functions
	2.2Environment support functions
	2.3Time and Date support functions
	2.4GSM support functions
	2.5GPS support functions
	2.6FLASH functions
	2.7Functions for IO signals

	MON186 system services
	3.1Serial support functions
	3.2Environment support functions
	3.3Time and Date support functions
	3.4Memory management functions
	3.5Process management functions
	3.6Console character input and output functions
	3.7File functions
	3.8Auxiliary IO functions
	3.9Miscellaneous functions

	HARDWARE SUPPORT
	4.1A2D-3 and A2D-3JP3 hardware settings
	4.2A3D and A3DJP3 hardware settings

	DEBUG INTERFACE
	Technical data

